Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.28.474344

ABSTRACT

Respiratory diseases such as cystic fibrosis, COPD, bronchiectasis asthma and COVID-19 are difficult to treat owing to viscous secretions in the airways that evade mucocilliary clearance. Since earlier studies have shown success with BromAc as mucolytic agent for treating a rare disease known as pseudomyxoma peritonei (PMP), we tested the formulation on two gelatinous airway representative sputa models, in order to determine whether similar efficacy exist. The sputum (1.5 ml) lodged in an endotracheal tube was treated to aerosolised N-acetylcysteine, bromelain, or their combination (BromAc) using a nebuliser with 6.0 ml of the agents in phosphate buffer saline, over 25 min. Controls received phosphate buffer saline. The dynamic viscosity was measured before and after treatment using a capillary tube method, whilst the sputum flow (ml/sec) was assessed using a 0.5 ml pipette. Finally, the sequestered agents (concentration) in the sputa after treatment were quantified using standard bromelain and N-acetylcysteine chromogenic assays. Results indicated that bromelain and N-acetylcysteine affected both the dynamic viscosities and pipette flow in the two sputa models, with changes in the former parameter having immense effect on the latter. BromAc showed a greater rheological effect on both the sputa models compared to individual agents. Further, correlation was found between the rheological effects and the concentration of agents in the sputa. Hence, this study indicates that BromAc may be used as a successful mucolytic for clearing airway congestion caused by thick mucinous immobile secretion, however further studies with patient sputum samples using aerosol BromAc is warranted.


Subject(s)
Respiratory Tract Diseases , Bronchiectasis , Pseudomyxoma Peritonei , Pulmonary Disease, Chronic Obstructive , Cystic Fibrosis , Respiratory Tract Infections , COVID-19
2.
Eur J Radiol Open ; 8: 100350, 2021.
Article in English | MEDLINE | ID: covidwho-1231993

ABSTRACT

BACKGROUND: Recent studies reported that CT scan findings could be implicated in the diagnosis and evaluation of COVID-19 patients. OBJECTIVE: To identify the role of High-Resolution Computed Tomography chest and summarize characteristics of chest CT imaging for the diagnosis and evaluation of SARS-CoV-2 patients. METHODOLOGY: Google Scholar, PubMed, Science Direct, Research Gate and Medscape were searched up to 31 January 2020 to find relevant articles which highlighted the importance of thoracic computed tomography in the diagnosis as well as the assessment of SARS-CoV-2 infected patients. HRCT abnormalities of SARS-CoV-2 patients were extracted from the eligible studies for meta-analysis. RESULTS: In this review, 28 studies (total 2655 patients) were included. Classical findings were Ground Glass Opacities (GGO) (71.64 %), GGO with consolidation (35.22 %), vascular enlargement (65.41 %), subpleural bands (52.54 %), interlobular septal thickening (43.28 %), pleural thickening (38.25 %), and air bronchograms sign (35.15 %). The common anatomic distribution of infection was bilateral lung infection (71.55 %), peripheral distribution (54.63 %) and multiple lesions (74.67 %). The incidences were higher in in the left lower lobe (75.68 %) and right lower lobe (73.32 %). A significant percentage of patients had over 2 lobes involvement (68.66 %). CONCLUSION: Chest CT-scan is a helpful modality in the early detection of COVID-19 pneumonia. The GGO in the peripheral areas of lungs with multiple lesions is the characteristic pattern of COVID-19. The correct interpretation of HRCT features makes it easier to detect COVID-19 even in the early phases and the disease progression can also be accessed with the help of the follow-up chest scans.

3.
Javed Akhter; Krishna Pillai; Samina Badar; Ahmed Mekkawy; Sarah Valle; David L Morris; Andrew McGuire; Renee Bazin; Andres Finzi; Alptekin Gueler; Jakob Loschko; Mohan Maddur; Kristin Tompkins; Journey Cole; Bonny Gaby Lui; Thomas Ziegenhals; Arianne Plaschke; David Eisel; Sarah Dany; Stephanie Fesser; Stephanie Erbar; ferdia Bates; Diana Schneider; Bernadette Jesionek; Bianca Saenger; Ann-Kathrin Wallisch; Yvonne Feuchter; Hanna Junginger; Stefanie Krumm; Andre Heinen; Petra Adams-Quack; Julia Schlereth; Christoph Kroener; Shannan Hall-Ursone; Kathleen Brasky; Matthew C Griffor; Seungil Han; Joshua Lees; Ellene Mashalidis; Parag Sahasrabudhe; Charles Tan; Danka Pavliakova; Guy Singh; Camila Fontes-Garfias; Michael Pride; Ingrid Scully; tara Ciolino; Jennifer Obregon; Michal Gazi; Ricardo Carrion; Kendra Alfson; Warren Kalina; Deepak Kaushal; Pei-Yong Shi; Thorsten Klamp; Corinna Rosenbaum; Andreas Kuhn; Oezlem Tuereci; Philip Dormitzer; Kathrin Jansen; Ugur Sahin; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.07.286906

ABSTRACT

Objectives: SARS-CoV-2 infection is the cause of a worldwide pandemic, currently with limited therapeutic options. It is characterised by being highly contagious and nasal mucosa appears to be the primary site with subsequent spread to the lungs and elsewhere. BromAc (Bromelain & Acetylcysteine) has been described to disrupt glycoproteins by the synchronous breakage of glycosidic linkages and disulphide bonds. The spike protein of SARS-CoV-2 is an attractive target as it is essential for binding to the ACE2 receptor in host cells and is formed of glycoprotein and disulphide bridges for stabilisation. Hence, we sought to determine whether BromAc has activity on the spike and envelope protein specific to SARS-CoV-2 virus. Design: Gel electrophoresis analysis was carried out on recombinant spike and envelope proteins that were treated with a range of concentrations of single agents and BromAc. For UV analysis of disulfide bonds reduction, both spike and envelope protein were treated with Acetylcysteine with the determination of loss of disulfide bonds. Results: Recombinant spike and envelope SARS-CoV-2 protein were fragmented by BromAc whilst single agents had minimal effect. Spike and envelope proteins disulphide bonds were reduced by Acetylcysteine. Conclusion: BromAc disintegrates the spike and envelope protein from SARS-CoV-2 and may render it non-infective. In vitro tests on live virus have been encouraging and clinical testing through nasal administration in patients with early SARS-CoV-2 infection is imminent.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL